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This paper reformulates the two-phase solidification problem (i.e., the Stefan problem) as
an inverse problem in which a cost functional is minimized with respect to the position of
the interface and subject to PDE constraints. An advantage of this formulation is that it
allows for a thermodynamically consistent treatment of the interface conditions in the
presence of a contact point involving a third phase. It is argued that such an approach in
fact represents a closure model for the original system and some of its key properties
are investigated. We describe an efficient iterative solution method for the Stefan problem
formulated in this way which uses shape differentiation and adjoint equations to deter-
mine the gradient of the cost functional. Performance of the proposed approach is illus-
trated with sample computations concerning 2D steady solidification phenomena.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In this investigation we propose a computational method for solution of heat transfer problems with change of phase, the
so-called two-phase Stefan problem, when contact lines are present. Such problems arise in many applications, including the
modeling and control of crystal growth [1,2], melting and solidification [3,4], or optimization of advanced welding processes
which is the particular problem motivating the present research effort. By a contact line we mean an intersection of the
interface separating the two phases (i.e., for example, the liquid and the solid phase) with another interface separating
the third phase (i.e., gas), or the domain boundaries. From the mathematical modeling perspective, the main challenge is
to derive interface conditions consistent from the physical (thermodynamic) point of view and at the same time computa-
tionally tractable. The triple-phase contact problem is a subject of intensive research, both theoretical and experimental.
Although significant results have been achieved in both understanding and modeling such problems, it remains unclear
whether they can be applied to the case of the molten contact line, see [3,4] for more discussion. Whether or not a contact
line is present, the Stefan problem represents a free-boundary problem, i.e., one in which the position of the liquid–solid
interface is also an unknown and must be determined in addition to solution of the governing partial differential equations
(PDEs). We propose here to formulate this problem as an inverse problem which can then be solved using methods of
. All rights reserved.
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PDE-constrained optimization. In this approach a suitably parametrized geometry of the interface serves as a control variable
that is adjusted to satisfy the interface boundary conditions in a suitable sense. The idea of recasting a free-boundary prob-
lem as an optimization problem is not new [5], and was already applied in a general setting in the theoretical investigations
of Alt and Cafarelli [6], Zolésio [7] and Hoffmann and Tiba [8], while in the context of a one-dimensional (1D) Stefan problem
such an approach was considered by Okhezin [9]. From the computational point of view the main difficulty consists in deter-
mining the gradient (i.e., the sensitivity) of the cost functional with respect to modifications of the domain geometry, the so-
called ‘‘shape gradient” [10]. As regards computational studies, applications of this approach to some model problems were
explored by Männikkö et al. [11], Tiihonen [12], Kärkkäinen and Tiihonen [13], Haslinger et al. [14], Donaldson and Wetton
[15] and Eppler et al. [16,17].

Our present work tackles a more complicated version of the Stefan problem which involves a contact line and a third
phase. One contribution of this investigation is to show how the constraints due to the third phase can be incorporated into
a consistent formulation of the optimization problem, more specifically, the definition of the shape gradient. Another con-
tribution is to propose and justify a definition of the cost functional that is thermodynamically more consistent than the ones
used in previous investigations (e.g. [9,11,14]). It is also shown that the proposed formulation is in fact equivalent to intro-
ducing a closure model for the capillary phenomena at the contact line. The structure of the paper is as follows: in the next
Section we present the mathematical framework for the Stefan problem with a particular focus on the interface boundary
conditions, in the following Section we reformulate this problem as an optimization problem, whereas an adjoint-based
algorithm for its solution is introduced in Section 4; computational results are presented and discussed in Section 5; sum-
mary and conclusions are deferred to Section 6.
2. Statement of the Stefan problem: governing equations and interface conditions

For the sake of simplicity, in the present work we focus on the two-dimensional (2D), steady case; a generalization of our
approach to the three-dimensional (3D), time-dependent setting is left for the future. We consider a system consisting of
three phases: solid ðSÞ, liquid ðLÞ, and gas ðGÞ, and shown schematically in Fig. 1. The solid and liquid phases are assumed
to occupy the domains XS and XL, so that the computational domain is defined as XSL , XS

S
XL (‘‘,” means ‘‘equal to by

definition”). It is also assumed that the density of the liquid and solid phase is the same. The boundary where the solid do-
main XS is truncated will be denoted CS and will be assumed fixed. The gas phase will only be treated as ‘‘ambient” and will
not be explicitly included in our model except for the boundary conditions on the interfaces CSG and CLG. Our focus will be
primarily on determining the position of the interface CSL and the contact points B and B0 defined as fB;B0g ¼ CSL \ CLG. It will
be assumed that the interface CSL is ‘‘structured”, i.e., can be modeled by a surface with zero thickness, whereas the solid–gas
and liquid–gas interfaces CSG and CLG will be assumed flat. The unit normal vectors n at the different interfaces are oriented
as shown in Fig. 1.

The steady heat transfer is governed by the equations
� $ � ðkS$TÞ ¼ 0 in XS; ð1aÞ

� $ � ðkL$TÞ ¼ 0 in XL; ð1bÞ
where T 2 H1ðXSLÞ is the temperature distribution ðH1ðXSLÞ is the Sobolev space of functions defined on XSL and having
square-integrable gradients [18]), whereas kS and kL are the thermal diffusivities of the solid and liquid phase, respectively.
In our derivations we will allow them to be general functions of x and y, but in our computations we will assume for sim-
plicity that they are constant and kS – kL. Eq. (1b) are complemented with Neumann-type boundary conditions on the inter-
faces CSG and CLG
LGΓ

ΓSL

Γ S =[A,C]    [C,C’]    [C’,A’]

Γ SG =[A,B]    [A’,B’]

Ω L

Ω S
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C C’

B’

n
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n

Fig. 1. Schematic of the problem geometry.
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� kS
@T
@n
¼ uSG on CSG; ð2aÞ

� kL
@T
@n
¼ uLG on CLG; ð2bÞ
where uSG and uLG are the heat fluxes. On the boundary CS we impose the Dirichlet boundary condition
T ¼ Ts on CS; ð3Þ
where Ts represents the far-field temperature. We will require that the functions uSG;uLG, and Ts be such that they satisfy the
compatibility condition (cf. (2a) and (3))
�kS
@Ts

@y
¼ uSG at A;A0; ð4Þ
and, in addition, generate single-connected domains XL and XS.
The classical theory of the steady-state Stefan problem [19] postulates that the interface CSL is fully described by the fol-

lowing two conditions:

(1) Continuous normal heat flux
k
@T
@n

� �L

S

¼ 0 on CSL; ð5Þ

where k @T
@n

� �L

S
, kL

@T
@n

��
L
� kS

@T
@n

��
S

with the normal derivatives defined as @T
@n

��
S
, lim�!0

TðxSLþ�nÞ�TðxSLÞ
� and @T

@n

��
L
,

lim�!0
TðxSL��nÞ�TðxSLÞ

� ; expression (5) represents for some xSL 2 CSL the jump of the temperature gradient across the inter-
face (in general, ½��LS will denote the jump of the given quantity across the interface CSLÞ; we note that (5) expresses the
conservation of energy known as the first principle of thermodynamics,
(2) Prescribed liquid–solid transition temperature
T ¼ T ðinterface geometry;material propertiesÞ on CSL; ð6Þ

where the function T ð. . .Þ will be specified below; the nature of this condition is more subtle, as it is related to the
second principle of thermodynamics which is expressed as an inequality [19]; therefore, as discussed below, condition
(6) may take several different thermodynamically consistent forms, and the one employed most commonly is

T ¼ Tm on CSL; ð7Þ

where Tm is a constant melting temperature.
While relations (5) and (7) represent the classical statement of the Stefan interface conditions, many important interfacial
phenomena exhibit deviations from the simple relation (7). An extensive review of such phenomena can be found in the
monograph [20]. Furthermore, condition (7) is a part of a nonlinear boundary value problem, and as such raises some ques-
tions of the mathematical nature. Namely, it follows from this condition that the interface CSL must coincide with an isoline
of the solution of elliptic problem (1)–(5). In the case when kS – kL the existence or non-existence of such an isoline is a non-
trivial question and can be rigorously established for some simple cases only, see Appendix for a proof of existence for the
case when the solution belongs to the Sobolev space H2ðXSLÞ, i.e., the space of functions on XSL whose second weak deriva-
tives are square-integrable [18]. It is worth noting that although the regularity of harmonic functions on non-smooth do-
mains has been well studied (see, e.g., the monograph [21] and the paper [22]), only few results concern problems in
‘‘double-wedge” geometries such as the domain depicted in Fig. 1 (e.g., [23]).

In order to account for situations in which condition (7) may lead to inconsistent formulations, a generalized Stefan con-
dition is derived from the interfacial thermodynamic laws describing the force and energy balances [19]. Let s be the arc-
length coordinate along the interface CSL and h the angle between the normal vector n and the OX axis of the coordinate
system, so that nðhÞ ¼ ½cos h; sin h�T . The symbols hþ and h� will represent the limiting values of the normal angle at the
θ+θ−

θ−n(    )

θ+n(    )

ΓSL

B

α

s

Fig. 2. Neighborhood of the contact point B.
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two sides of the contact point B (Fig. 2, the same applies to B0Þ. The tangent vector will be denoted s. The capillary force C
acting within the interface can be expressed as [19]
CðhÞ ¼ f ðhÞsðhÞ þ f 0ðhÞnðhÞ; ð8Þ
where f ðhÞ is the interfacial free energy. The analysis carried out in Section 7.4 of [19] yields the following two conditions as a
generalization of (7)
L
T � Tm

Tm
¼ dC

ds
� n ¼ , f þ d2f

dh2

 !
on the smooth part of CSL; ð9aÞ

CðhþÞ � sLG ¼ Cðh�Þ � sLG at the contact points B and B0; ð9bÞ
where L is the latent heat, , , dh=ds is the interface curvature, and sLG is the vector tangent to the interface CLG. As is usually
the case in macroscopic models of the Stefan problem, we will assume that the interfacial free energy f is a smooth function
of the angle h. We note in passing that this is not necessarily the case in microscopic models which distinguish different
grains in the solid material. In such cases the interface CSL is a piecewise linear curve with ‘‘kinks” corresponding to the grain
boundaries which result from the interfacial free energy f ðhÞ in the so-called ‘‘crystalline form” [19] featuring ‘‘cusps” at
some particular angles h. Consequently, d2f=dh2 may become infinite and the interface should be piecewise flat with each
segment characterized by , ¼ 0 (called facet) corresponding to one of these singular orientations. The orientation of a facet
F is determined from the Herring condition [19]
L
Z

F

T � Tm

Tm
ds ¼

X
G

f ðhFÞsðhFÞ � sðhGÞ � CðhGÞ � sðhGÞ
nðhFÞ � sðhGÞ

; ð10Þ
where G are the facets adjacent to F; hG and hF are the orientations of the facets G and F, and CðhGÞ is the capillary force ex-
erted by the facet G on the facet F. Hence the local condition (9a) is replaced by the nonlocal condition (10) together with the
assumption concerning nonsmoothness of f. Details of this formulation can be found in [2], whereas questions of existence
and uniqueness of solutions to such problems are studied in [24]. We add that an extension of such formulation to the case
involving contact points is not straightforward, and therefore we will not consider this formulation here.

We emphasize that, regardless of the specific form of the boundary condition, both (9b) and (10) involve a new dependent
variable, namely, the interfacial free energy f. Therefore, some additional information must be provided in order to determine
this quantity and close the system. As a matter of fact, accurate determination of the interfacial free energy f is an extremely
difficult task requiring information at the microscopic level which is not usually available in macroscopic computations of
the Stefan problem. In many situations involving common materials (e.g., metals) the interfacial energy f is negligibly small
which justifies the constant approximation (7), provided the interface is characterized by moderate values of the curvature
,. In the presence of contact points, condition (9b) must be satisfied in addition to (5) and (9a). Consequently, in order to
accommodate this additional condition, the right-hand side (RHS) in (9a) must be suitably adjusted, and as a result the con-
stant approximation (7) will no longer apply. Furthermore, we note that condition (9b) determines in fact the contact angle a
between the interfaces CSL and CLG at the contact points B and B0 (Fig. 2). This is because (9b) represents the balance of the
capillary forces acting on the interfaces in the direction of the ‘‘translation” of the contact points B and B0. This leads to the
known conclusion that the steady-state contact angle a is a constitutive property of the material [19]. Based on these obser-
vations, in Section 3 we propose an inverse formulation to resolve this ‘‘closure problem”.
3. Inverse model

In this section, we first reformulate the generalized Stefan problem defined by (1)–(5) and (9) as a PDE-constrained opti-
mization (inverse) problem, and then justify this approach as a closure model for unresolved interfacial phenomena. Our
attention will be focused on the proper handling of the solution in the neighborhood of the contact points. In Section 2,
we argued that imposing a specific contact angle am induces a deviation from approximate condition (7). While in principle
this deviation is described by the RHS of (9a), it is expressed in terms of a microscopic quantity, the interfacial free energy f,
for which no additional equation is readily available. We therefore propose to close system (1)–(5) and (9) by postulating
that its solutions exhibit certain macroscopic properties observed in reality. We do this by requiring that the contact angle
a at B and B0 be approximately equal to am. Defining a cost functional in the form
J ðCSLÞ ,
1
2

Z
CSL

½TðCSLÞ � Tm�2 dsþ ‘

2
½cosðaðCSLÞÞ � cosðamÞ�2

����
B;B0
; ð11Þ
we state the problem as follows:
min
CSL

J ðCSLÞ; ð12Þ
where the dependence of TðCSLÞ and aðCSLÞ on the position of the interface CSL is expressed through (1)–(5). In contrast to the
interfacial free energy f, the positive adjustable parameter ‘ is now a macroscopic quantity, as it weighs the deviation from
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the prescribed value am of the contact angle against a measure of the deviation from approximate condition (7). We also
remark that the formulation based on the cosine of the contact angle a is preferable to the formulation based on the angle
itself on two counts. Firstly, we notice that cosðaÞ � sSL � sLG where the tangential vectors sSL; sLG are in fact more readily avail-
able in numerical computations than a. Secondly, the formulation based on the cosine is related to Young’s equation fre-
quently arising in capillary physics [20]. It is evident that solutions of problem (11), (12) will depend on the parameter ‘
and one of the goals of this work is to quantify this dependence. To begin with, we review two limiting cases as regards
the values of the parameter ‘. We note that setting ‘ ¼ 0 removes all constraints on the contact angles, and therefore in this
case we can expect an interface CSL satisfying condition (7). On the other hand, considering ‘!1 we obtain the case in
which the condition aðCSLÞ ¼ am is enforced in the ‘‘hard” sense, i.e., the interface CSL will satisfy (9b) exactly. We defer
the discussion of the intermediate cases to Section 5. Finally, we add that demonstrating rigorously the existence and
uniqueness of solutions of problem (11), (12) is far from trivial and falls beyond the scope of the present work.

We will now show that our proposed approach in fact represents a closure model for unresolved interfacial quantities in
system (1)–(5) and (9). In general terms, for a system described by a set of state variables y satisfying a governing equation
FðyÞ ¼ 0 it is assumed that the state variables are divided into two groups: the resolved quantities y0 which are explicitly
included in the model, and the unresolved (modeled) quantities y0. The closure model consists in a relationship y0 ¼ y0ðy0Þ
which allows one to express the unresolved quantities in terms of the resolved ones, so that the governing equations can
be ‘‘closed” as follows Gðy0Þ , Fðfy0; y0ðy0ÞgÞ ¼ 0. We note that our original problem (1)–(5) and (9) is in fact underdeter-
mined, because there is no equation characterizing the interfacial free energy f. Assuming that f is an unresolved quantity,
we close the system by replacing Eq. (9a) which involves f with another condition in which f does not appear, namely, (11),
(12). This formulation is in fact equivalent to finding an interface CSL which is in the mechanical equilibrium. Indeed, we note
that the balance of the capillary forces and other forces, including inertia forces, exerted by the crystal and the melt on the
interface is given by [19]
dC
ds
¼ n � rS � n � rL; ð13Þ
where rS and rL are the stress tensors of the solid and liquid phases. In view of (9a), we observe that minimizing the tem-
perature deviation ðTjCSL

� TmÞ is in fact equivalent to finding an interface which minimizes ðn � rS � n� n � rL � nÞ in the mean
square sense. This provides a physical justification for the first term in cost functional (11).

Once problem (11), (12) is solved and the position of the interface CSL and the interfacial temperature TjCSL
are deter-

mined, the unresolved (modeled) quantity f can be determined from system (9b) where the left-hand side in (9a) is already
given. Our present investigation is focused solely on the development and validation of a numerical technique for solution of
the PDE-constrained optimization problem (11), (12). Problem (9b) can be solved for the interfacial free energy f using stan-
dard numerical techniques and this issue will not be addressed here.
4. Solution of the inverse problem

In this section, we propose a gradient-based approach to solution of the inverse problem formulated in Section 3. Local
solutions to optimization problems such as (12) are characterized by the first-order optimality conditions which require the
Gâteaux differential of the cost functional J to vanish for all perturbations. In problem (11), (12) the control variable is the
position of the interface CSL, hence (11), (12) is in fact a shape optimization problem. Problems in which the geometry of the
domain is an independent variable require special treatment, because this geometry must be suitably parametrized before
differentiation with respect to the shape can be meaningfully defined. Such problems can be treated using methods of the
shape differential calculus [10], where perturbations of the interface geometry can be represented as
xðt;ZÞ ¼ xþ tZ for x 2 CSLð0Þ; ð14Þ
where CSLð0Þ is the original unperturbed interface and Z is a ‘‘velocity” field defined on XSL and characterizing the perturba-
tion. The points xðt;ZÞ thus define the perturbed interface CSLðt;ZÞ (expressions analogous to (14) could also be written for
XSðt;ZÞ and XLðt;ZÞ, but they are omitted here for brevity). We will use the notation Xð0Þ , Xð0;ZÞ and Cð0Þ , Cð0;ZÞ for
domains and interfaces (with suitable subscripts), respectively. The shape differential of a functional such as (11) in the
direction of the perturbation field Z is defined as
J 0ðCSLð0Þ; ZÞ , lim
t!0

J ðCSLðt;ZÞÞ � J ðCSLð0ÞÞ
t

: ð15Þ
Given cost functional (11), its shape differential (15) can be computed using a classical result concerning shape differenti-
ation [25] which says that for a smooth domain Xðt;ZÞ and smooth functions f and g defined, respectively, on this domain
and its boundary we have
Z

Xðt;ZÞ
f dXþ

Z
@Xðt;ZÞ

g ds

 !0
¼
Z

Xð0Þ
f 0 dXþ

Z
@Xð0Þ

g0 dsþ
Z
@Xð0Þ

f þ ,g þ @g
@n

� �
Z � nds; ð16Þ
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where the prime denotes the shape derivative defined as in (15) and n is the unit normal vector pointing out of the domain
X. Since in the present problem the boundary @XL ¼ CSL

S
CLG is only Lipschitz continuous, we need the following general-

ization of the preceding result proved in [19].

Theorem 4.1. Let g be a smooth function defined on perturbations cðt;ZÞ of a smooth arc cð0Þ , cð0;ZÞ ¼dBB0 . Then
Z
cðt;ZÞ

g ds

 !0
¼
Z

cð0Þ
g0 dsþ

Z
cð0Þ

,g þ @g
@n

� �
Z � ndsþ ½gZ � s�

����B0
B

; ð17Þ
where s is the unit vector tangent to cð0Þ.

We now proceed with differentiation of the second term in (11) involving the contact angle a. By definition, the contact
angle a satisfies the relation cosðaÞ ¼ �s � exjB;B0 , where ex is the unit vector associated with the OX axis, so that using the
classical shape differentiation result [10] one obtains
½cosðaÞ�0 ¼ �ðs � exÞ0 ¼ �n � ex
@Z � n
@s

¼ sinðaÞ @Z � n
@s

; ð18Þ
where @
@s is the gradient in the direction tangential to the interface CSL. We are now in the position to compute the complete

shape differential of cost functional (11) which yields
J 0ðCSLð0Þ; ZÞ ¼
Z

CSLð0Þ
ðT � TmÞT 0

�����
L

þ ,
ðT � TmÞ2

2
þ ðT � TmÞ

@T
@n

����
L

" #
Z � nds

þ ðT � TmÞ2

2
Z � sþ ‘½cosðaÞ � cosðamÞ� sinðaÞ@Z � n

@s

�" �����
B0

B

; ð19Þ
where T 0
��
L is the shape derivative of T evaluated on the liquid side of the interface CSL. A fundamental result of the shape

differential calculus referred to as the ‘‘structure theorem” [10] stipulates that the shape differential of a cost functional
J ðCð0;ZÞÞ defined on a closed curve Cð0;ZÞ can be expressed as
J 0ðCð0Þ; ZÞ ¼
Z

Cð0Þ
hZ � nds; ð20Þ
where the scalar-valued function h is defined on the curve Cð0Þ. As will be shown later in this section, in our present problem
we will need to generalize expression (20) due to the fact that CSL is an open arc, rather than a closed curve. In any case, the
gradient $J of the cost functional J can be extracted by invoking the Riesz theorem [26] to identify the shape differential of
J ðCSLÞ with an inner product as J 0ðCSLð0Þ; ZÞ ¼ h$J ;ZiXðCSLÞ, where XðCSLÞ is a Hilbert space of vector-valued functions de-
fined on CSL. This gradient is a central element of the following iterative algorithm which can be employed to solve optimi-
zation problem (11), (12)
xj
Cðkþ1Þ

SL
¼ xj

CðkÞ
SL
þ skg½$J ðCðkÞSL Þ�; k ¼ 1;2; . . . ; ð21Þ
where xj
CðkÞSL

represents the position of the interface CSL at the kth iteration and sk is the length of the step in the descent
direction. The function g determines the specific form of the optimization algorithm used (e.g., the steepest descent, conju-
gate gradients, or quasi-Newton method, etc., [27]). We note, however, that expression (19) does not yet have a form com-
patible with (20), as it explicitly depends on the shape derivative T 0. Shape differential (19) can be transformed into a suitable
form by introducing the adjoint state T� 2 H1ðXSLÞ and considering the following weak formulation of (1)–(5) in which the
adjoint state serves as the test function
�
Z

XL

$ � ðkL$TÞT� dX�
Z

XS

$ � ðkS$TÞT�dX ¼ 0: ð22Þ
After integrating by parts and using boundary conditions (2)–(4) we obtain
Z
XL

kLð$T � $T�ÞdXþ
Z

XS

kSð$T � $T�ÞdXþ
Z

CLG

T�uLG dsþ
Z

CSL

T�k
@T
@n

� �L

S

dsþ
Z

CSG

T�uSG ds�
Z

CS

kST�
@T
@n

����
S

ds ¼ 0: ð23Þ
We note that before shape differentiation is performed we may not use (5) to simplify the term involving T�k @T
@n

� �L

S. Next we
apply shape differentiation formulas (16) and (17) to weak formulation (23) which yields
Z

XL

kLð$T 0 � $T�ÞdXþ
Z

XS

kSð$T 0 � $T�ÞdXþ
Z

CLG

T�u0LG ds�
Z

CSLðt;ZÞ
T�k

@T
@n

� �L

S
ds

 !0

þ
Z

CSG

T�u0SG ds�
Z

CS

kST�
@T 0

@n

����
S

dsþ
Z

CSL

½k$T � $T��LSZ � ndsþ T�½ðuLG �uSGÞZ � ex�
����B0
B

¼ 0: ð24Þ
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Using (17) together with boundary condition (5), the shape differential of the integral over CSL can be expressed as
Z
CSLðt;ZÞ

T�k
@T
@n

� �L

S
ds

 !0
¼
Z

CSLð0Þ

@

@n
T�k

@T
@n

� �L

S
Z � nds ¼

Z
CSLð0Þ

k
@T
@n

@T�

@n

� �L

S
Z � nds; ð25Þ
where we used the fact that uSL , k @T
@n

� �L

S
¼ 0 on CSL, so that uSL admits an extension with zero into the domains XS and XL.

Using this result in (24) and performing integration by parts one more time leads to
�
Z

XL

$ � ðkL$T�ÞT 0 dX�
Z

XS

$ � ðkL$T�ÞT 0 dXþ
Z

CSL

kT 0
@T�

@n

� �L

S

dsþ
Z

CLG

kLT 0
@T�

@n

����
L

þ T�u0LG

� �
ds

�
Z

CSL

k
@T�

@n
@T
@n

� �L

S
Z � ndsþ

Z
CSG

kST 0
@T�

@n

����
S

þ T�u0SG

� �
dsþ

Z
CS

kS T 0jS
@T�

@n

����
S

� T�
@T 0

@n

����
S

� �
ds

þ
Z

CSL

½k$T � $T��LSZ � ndsþ T�½ðuLG �uSGÞZ � ex�jB
0

B ¼ 0: ð26Þ
We remark that the shape derivative field T 0 is discontinuous across the interface CSL. Shape differentiation of boundary con-
dition (3) and of the relationship TjS ¼ TjL expressing the continuity of the temperature field across the interface CSL yields
[25]
T 0 ¼ 0 on CS; ð27Þ

½T 0�LS þ
@T
@n

� �L

S
Z � n ¼ 0 on CSL: ð28Þ
We assume that the functions uSG and uLG appearing in boundary conditions (2a) and (2b) are invariant with respect to per-
turbations of the domain given by Z, so that
u0SG � 0; ð29aÞ
u0LG � 0: ð29bÞ
Let us now suppose that the adjoint state T� satisfies the following equations
� $ � ðkS$T�Þ ¼ 0 in XS; ð30aÞ
� $ � ðkL$T�Þ ¼ 0 in XL; ð30bÞ
with the boundary conditions
� k
@T�

@n

� �L

S

¼ T � Tm on CSL; ð31Þ

� kS
@T�

@n
¼ 0 on CSG; ð32Þ

� kL
@T�

@n
¼ 0 on CLG; ð33Þ

T� ¼ 0 on CS: ð34Þ
Using relations (27) and (28) together with the definition of the adjoint system in (30)–(34) allows us to simplify expression
(26), so that we obtain
Z

CSL

� T 0
��
L þ

@T
@n

����
L

Z � n
� �

ðT � TmÞ � k
@T
@n

@T�

@n

� �L

S
Z � n

" #
dsþ

Z
CSL

½kð$T � $T�Þ�LS � k
@T
@n

@T�

@n

� �L

S

 !
Z � nds

þ T�½ðuLG �uSGÞZ � ex�jB
0

B ¼ 0; ð35Þ
where we also used the equality
kT 0
@T�

@n

� �L

S
¼ T 0

��
L þ

@T
@n

����
L

Z � n
� �

k
@T�

@n

� �L

S
� k

@T
@n

@T�

@n

� �L

S
Z � n; ð36Þ
which is a consequence of (28). After further simplifications and regrouping certain terms (35) becomes
Z
CSL

k
@T
@s

@T�

@s

� �L

S

� k
@T
@n

@T�

@n

� �L

S

 !
Z � ndsþ T�½ðuLG �uSGÞZ � ex�jB

0

B ¼
Z

CSL

ðT � TmÞ T 0
��
L þ

@T
@n

����
L

Z � n
� �

ds; ð37Þ
where we used the fact that $T ¼ @T
@n nþ @T

@s s. One recognizes that the terms on the RHS in (37) also appear in expression (19)
for the shape differential J 0ðCSLð0Þ; ZÞ, so that (37) can be used to eliminate T 0 from this expression which gives
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J 0ðCSLð0Þ; ZÞ ¼
Z

CSL

k
@T
@s

@T�

@s

� �L

S
� k

@T
@n

@T�

@n

� �L

S
þ ,
ðT � TmÞ2

2

 !
Z � ndsþ T�ðuLG �uSGÞZ � ex þ

Z
� s
�� ����B0

B

þ ‘½cosðaÞ � cosðamÞ� sinðaÞ ,Z � sþ @Z
@s
� n
�� ����B0

B

: ð38Þ
We note that, since Z appears explicitly in (38), this expression of the cost differential is now consistent with the Riesz the-
orem and (20), and can be employed to identify the cost functional gradient. For example, choosing L2ðCSLÞ as the function
space XðCSLÞ in Riesz identity, we identify expression (38) with an L2 inner product as J 0ðCSLð0Þ; ZÞ ¼ h$L2

J ;ZiL2ðCSLÞ, so that
we obtain
$L2
J ¼ k

@T
@s

@T�

@s

� �L

S

� k
@T
@n

@T�

@n

� �L

S

þ ,
ðT � TmÞ2

2

" #
n

þ T�ðuLG �uSGÞex þ
ðT � TmÞ2

2
sþ ,‘½cosðaÞ � cosðamÞ� sinðaÞs

" #
½dðs� sB0 Þ � dðs� sBÞ�

þ ‘½cosðaÞ � cosðamÞ� sinðaÞ½ _dðs� sB0 Þ � _dðs� sBÞ�n on CSL; ð39Þ
where sB and sB0 are the arc-length coordinates of the contact points B and B0, whereas _d represents the distributional deriv-
ative of the Dirac delta. It arises through integration by parts with respect to s of the terms defined at the contact points B and
B0. We note that the gradient $L2

J , being a vector-valued function defined on the interface CSL, has components in both the
direction normal and tangential to the interface, which might appear to contradict the ‘‘structure theorem” as expressed in
(20). The reason for this discrepancy is that derivation of (20) supposes the interface to be a closed, smooth manifold, so that
the tangential terms never arise. As is evident from (39), the tangential component of the gradient $L2

J is localized at the
contact points B and B0 only. Hence, this component can be interpreted as locally ‘‘stretching” the interface CSL so that the
contact points stay at the top surface CSG

S
CLG when the interface CSL is displaced in the normal direction n. We also note

that, owing to the presence of the Dirac delta terms d and their distributional derivatives _d localized at B and B0, the L2 gra-
dient given in (39) is a very non-smooth distribution. While L2 gradients are the most common choice in adjoint-based opti-
mization of PDE systems [28], they are clearly inapplicable in the present problem. The reason is that the interface cannot be
displaced in a discontinuous manner, as this would be inconsistent with the continuity of the medium. We will solve this
problem by imposing some smoothness requirements on the gradient and to simplify the derivation we introduce the quan-
tity er ,

r
jrj, where r , ½x; y�T is the position vector determined with respect to an origin located on the boundary segment CLG.

We will restrict our attention to the perturbation fields in the form Z ¼ fer, where f is a scalar function defined on the inter-
face CSL. We note that since fer is tangential to CSG

S
CLG at B and B0, the tangential component of the gradient is not required

to keep the contact points on this boundary segment. The Riesz identity now becomes
J 0ðCSLð0Þ; ZÞ ¼ h$XJ ;ZiXðCSLÞ ¼ h$
XJ ; feriXðCSLÞ ¼ her � $XJ ; fieX ðCSLÞ

¼ hrXr J ; fieX ðCSLÞ
¼ J 0ðCSLð0Þ; fÞ; ð40Þ
where we denotedrXr J , er � $XJ the radial component of the gradient which is a scalar function, and eXðCSLÞ is the Hilbert
space of scalar functions defined on CSL. We now require that this gradient should belong to the Sobolev space H2ðCSLÞ with
the inner product defined as
hu; viH2ðCSLÞ ¼
Z

CSL

uv þ l2
1
@u
@s

@v
@s
þ l4

2
@2u
@s2

@2v
@s2

 !
ds ¼

Z
CSL

u� l2
1
@2u
@s2 þ l42

@4u
@s4

 !
v dsþ l2

1
@u
@s
� l4

2
@3u
@s3

!
v

 �����
B0

B

þ l4
2
@2u
@s2

@v
@s

����B0
B

;

ð41Þ
where u;v 2 H2ðCSLÞ and l1 and l2 are adjustable parameters with the meaning of a length-scale. Choosing H2ðCSLÞ as the
space eXðCSLÞ in the Riesz identity, one can identify expression (38) with an H2 inner product (41) as
J 0ðCSLð0Þ; fÞ ¼ hrH2

r J ; fiH2ðCSLÞ. In view of the arbitrariness of f we obtain
rH2

r J � l2
1
@2rH2

r J
@s2 þ l42

@4rH2

r J
@s4 ¼ k

@T
@s

@T�

@s

� �L

S

� k
@T
@n

@T�

@n

� �L

S

þ ,
ðT � TmÞ2

2

" #
n � er on CSL; ð42aÞ

l21
@rH2

r J
@s

� l4
2
@3rH2

r J
@s3 ¼ T�ðuLG �uSGÞex � er þ

ðT � TmÞ2

2
s � er þ ‘,½cosðaÞ � cosðamÞ� sinðaÞs � er at B;B0; ð42bÞ

l42
@2rH2

r J
@s2 ¼ ‘½cosðaÞ � cosðamÞ� sinðaÞn � er at B; B0: ð42cÞ
Thus, the rH2

r J gradient can be determined by solving a fourth-order boundary value problem defined on the interface CSL.
In order to avoid certain technicalities related to solution of this problem in practice, our computational results reported in
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Section 5 will correspond to the limit l2 ! 0 in which the terms with the highest derivatives in (42c) vanish, and instead of an
H2 gradient we obtain an H1 gradient defined by a system with the Helmholtz operator
rH1

r J � l2
1
@2rH1

r J
@s2 ¼ k

@T
@s

@T�

@s

� �L

S

� k
@T
@n

@T�

@n

� �L

S

þ ,
ðT � TmÞ2

2

" #
n � er on CSL; ð43aÞ

l2
1
@rH1

r J
@s

¼ T�ðuLG �uSGÞex � er þ
ðT � TmÞ2

2
s � er þ ‘,½cosðaÞ � cosðamÞ� sinðaÞs � er at B;B0: ð43bÞ
We add that taking the limit l2 ! 0 in (42c) is in fact equivalent to neglecting the terms involving @f
@s � n in (38). In the

context of adjoint-based PDE-constrained optimization, an approach involving H1 gradients was investigated in [29],
where it was shown that the inverse Helmholtz operator is in fact a low-pass filter with the cut-off proportional to l�1

1 ,
so that the parameter l1 can be used to control the smoothness of the gradient rH1

r J . For a general overview of Sobolev
gradients we refer the reader to the monograph [30]. We add that some of the results presented here were computed
using both the H1 and H2 gradients and in each case the gain from using the H2 gradient was rather insignificant (on aver-
age, less then 5% in terms of the value of the cost functional at any iteration). We finally remark that assuming the bound-
ary perturbation in the form Z ¼ fer, and therefore working with the gradient defined as a scalar function, significantly
simplifies determination of the Sobolev gradients, because one does not have to differentiate the unit vectors nðsÞ and
sðsÞ in (41).
5. Computational results

In this section, we present numerical results illustrating performance of the proposed method in the following test cases:

(1) (Case A) no conditions on the contact angles at B and B0, i.e., ‘ ¼ 0 in (11), which is equivalent to neglecting condition
(9b); this case will serve as a reference,

(2) (Case B) contact angle am prescribed at B, but not at B0,
(3) (Case C) system (1)–(5) considered in a moving frame of reference with no conditions imposed on the contact angles B

and B0; this case may serve as an approximate model of a welding process in the steady-state regime.

Before discussing the results for each of these cases in detail, we review some diagnostics concerning the determination of
the cost functional gradients and the convergence of the iterations. In terms of iterative process (21) we employ the conju-
gate gradient method to determine the descent direction g combined with a line minimization to determine the length of the
step sk [27]. This algorithm is implemented as follows (‘‘ ” denotes assignment):

k 1
Cð1ÞSL  initial guess
repeat

solve direct problem (1)–(5)
solve adjoint problem (30)–(34)
solve (43b) to determine rH1

r J ðC
ðkÞ
SL Þ

perform line minimization minsJ ðxjCðkÞ
SL
þ sgðkÞÞ to find the step-size sk

deform CSL along the conjugate direction g rH1

r J ðC
ðkÞ
SL Þ

h i
with the step size sk,

if jJ ðCðkþ1Þ
SL Þ � J ðCðkÞSL Þj <

eJ
2 ðjJ ðC

ðkþ1Þ
SL Þj þ jJ ðCðkÞSL Þj þ eaÞ then

l1  maxðl1=2; elÞ
end if
k kþ 1

until jskj < es

where eJ ; ea; el and es are different adjustable tolerances. We note that the length-scale l1 is adaptively decreased in the
course of the iterations, so that the H1 gradients gradually approach L2 gradients for increasing k. The initial guesses Cð1ÞSL

in cases A and C are chosen as arcs with some arbitrary shape, whereas in case B it is taken as the solution Cð1ÞSL obtained
in case A. We note that optimization problem (11), (12) is nonconvex and, in principle, different local minimizers can be
obtained from different initial guesses. While the presence of such nonunique solutions was indeed observed in some of
our computations, we made sure that the results presented in this section belong to the same family of solutions (parame-
trized by am and ‘Þ. The thermal diffusivities are selected as kS ¼ 200 and kL ¼ 100. Since our mathematical model intends to
represent a simplified weld pool created during a welding process, we choose boundary conditions (2a) and (2b) on the top
surface to represent the heat flow into the weld pool, i.e.,
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,

20 if jxj > 0:5;

2 � 103 hat0;1ðxÞ þ 20 if jxj 6 0:5;

(
ð44Þ
where hatx0 ;msup ðxÞ is a smoothed version of the hat function centered at the point x0 with the support of measure msup

(smoothing is applied so that the second derivative is continuous). Both the direct and the adjoint problem were solved using
the finite element method (FEM) on an unstructured, locally-refined mesh which was implemented in the multiphysics
modeling environment COMSOL [31], where additional subroutines were developed by the authors to handle the optimiza-
tion algorithm. The discretization points for the free boundary CSL were chosen among the finite element mesh points (finer
resolution was not necessary, as the gradient accuracy is ultimately limited by the accuracy of the solution of the direct prob-
lem). A cubic spline interpolation was used to define the displacement in all other points on the free boundary.

We begin presentation of our results with a test showing consistency of the gradient computations. To fix attention, we
focus on case A. In the spirit of [32], we define the quantity
jðeÞ ¼ e�1½J ðCSLðe; fÞÞ � J ðCSLð0ÞÞ�
hrXr J ; fiX

; ð45Þ
where the numerator is a finite-difference approximation of the Gâteaux shape differential J 0ðCSLð0Þ; fÞ computed for some
perturbation f, whereas the denominator expresses this differential in terms of the adjoint field. Thus, deviation of jðeÞ from
unity is a measure of the inconsistency of the gradient. In Fig. 3, we observe that the quantity jðeÞ is indeed very close to the
unity for different perturbations f when the magnitude e of the perturbation varies over almost three orders of magnitude.
Deviation of jðeÞ from the unity observed for very small values of e is the result of the round-off (subtractive cancellation)
errors, whereas the deviations observed for large values of e are due to truncation errors (loss of validity of the linear approx-
imation). We remark that in such tests one cannot apply perturbations whose support is not entirely contained in CSL which
is due to the presence of singular terms in (38) with the magnitude of the singularity depending on the contact angle. We
also emphasize that since we use here the ‘‘differentiate-then-discretize” rather than ‘‘discretize-then-differentiate” ap-
proach, the gradient should not be expected to be accurate up to the machine precision [28].

Convergence of iterations is shown in Fig. 4 where we illustrate the decrease of the cost functional J ðCðkÞSL Þ with the iter-
ations k. We note a rapid decrease, by about eight orders of magnitude, occurring over 80 iterations. For comparison, we also
illustrate the convergence of an iterative process using gradients with the ‘‘contact point term” [i.e., the second term on the
RHS in (42b)] omitted. Such ‘‘contact point terms” are present in the boundary conditions defining the gradient even if no
constraints are imposed on the contact angles at B and B0 [see the last term in (17)]. A noticeably slower convergence ob-
served in this case underlines the importance of such ‘‘contact point terms”. In Fig. 5a and b we show the deviation of
the interface temperature TjCSL

from the melting temperature Tm together with the corresponding gradient at the different
iterations. As expected, in the case with no constraints on the contact angle, we observe that the interface temperature TjCSL

gradually settles at the constant value Tm everywhere along the interface, so that ðTj
CðkÞSL
� TmÞ ! 0 as k!1. In fact, in

Appendix we prove that in problems with no constraints on the contact angles free boundaries coincide with temperature
isolines. We conclude the discussion of case A by showing in Fig. 6 the temperature isolines together with the position of the
interface CSL in a converged solution.
10−6 10−5 10−4 10−3 10−2
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

ε

κ(
ε)

Dependence of the quantity j [cf. (45)] on e. The perturbation f is a piecewise linear function of the arc-length coordinate coinciding with a finite
t basis function with the support contained in CSL: (empty symbols) perturbation adjacent to the contact point B and (solid symbols) perturbation far
e contact points.



10 20 30 40 50 60 70 80

10−12

10−10

10−8

10−6

10−4

10−2

k

J(
Γ SL(k

) )

Fig. 4. Cost functional J ðCðkÞSL Þ as a function of the iteration count k using (solid symbols) complete gradients defined in (43b), and (empty symbols)
incomplete gradients with the ‘‘contact point terms” omitted.

O. Volkov, B. Protas / Journal of Computational Physics 228 (2009) 4893–4910 4903
Next we consider case B in which we prescribe the contact angle and compare the results to the case with no constraints
on the contact angle. For comparison purposes, the contact angle is prescribed at the left contact point B only. The problem
with an imposed contact angle is more delicate, therefore we present our results for this case in greater detail. We will first
show results corresponding to ‘ ¼ 10�2 which is a rather large value of this parameter and ensures that the effect of the fixed
contact angle can be detected over relatively large distances from the contact point. In the sequel we will also consider the
problem for a range of different values of ‘. We begin by investigating the convergence of the solutions to problem (11), (12)
with respect to grid refinement. The grid is refined in the neighborhood of the contact point only using standard tools avail-
able in COMSOL. In this numerical experiment we find interfaces corresponding to four successive grid refinements with the
average grid size around the contact point given by h ¼ f5� 10�6;5� 10�5;5� 10�4;5� 10�3g. In each of these cases the
average grid size away from the contact points is the same and equal to h0 ¼ 5� 10�3. We analyze convergence by exam-
ining the position of the interface obtained for different numerical resolutions h and related to the best resolved computa-
tion, i.e., using the quantity
nhðsÞ , j½xhðsÞ � xrefðsÞ� � nrefðsÞj xh 2 Ch
SL; xref 2 CSL; ð46Þ
where the objects with the superscript ‘‘h” are computed with the corresponding resolution, whereas the objects with the
subscript ‘‘ref” correspond to the reference (finest) resolution href ¼ 10�6. The parametrization of the curve Ch

SL with s is de-
fined in such a way that for every s the point xhðsÞ is at the intersection of nref ðsÞ and Ch

SL. The results of the convergence study
are presented in Fig. 7 where we show nhðsÞ for different values of h. In this Figure we note the systematic decrease of the
error nh for all s as the mesh size is refined. Remarkably, while the mesh refinement takes place in the vicinity of the contact
point only, the errors are reduced globally over the entire interface CSL. In view of the these rather small errors, unless stated
otherwise, in the subsequent tests we will use the mesh size h ¼ h0 ¼ 5� 10�3.

Next, Fig. 8 illustrates the deviation of the interface temperature TjCSL
from the constant value Tm as the contact angle am

deviates from approx. 64� which was the angle obtained in case A, i.e., without any constraints. Since the deviation TjCSL
� Tm

is quite localized near the contact point B, in Fig. 8a we employ a logarithmic scale for the coordinate s which allows us to
represent the entire interface CSL in the figure. We notice that changes of the imposed contact angle do not globally affect the
solution and the observed deviations of TjCSL

� Tm from zero are local and grow as the contact angle decreases. It is also vis-
ible that the magnitude of this deviation depends on how the prescribed contact angle differs from the value obtained with
no constraints. The local (in space) nature of this effect is also observed in Fig. 9 where we present the interfaces CSL obtained
as solutions of the optimization problems corresponding to different values of the contact angle am prescribed at B.

It was mentioned in Section 3 that the parameter ‘ appearing in definition (11) of the cost functional has the meaning of
the inverse of relative variation of the length-scale characterizing the distance from the contact point where condition (9a)
significantly deviates from (7). This effect is clearly visible in Fig. 10 in which we show how the absolute value of the devi-
ation of TðsÞjCSL

from Tm varies with the distance s from the contact point for different values of the parameter ‘. We observe
that with an increase of ‘ the deviation jTðsÞjCSL

� Tmj vanishes much faster with s, but its magnitude at s ¼ 0þ increases. In
other words, the deviation becomes much more localized for large values of ‘. There is arguably a universal pattern discern-
ible in Fig. 10, and by quantifying this pattern we will attempt to reveal the intrinsic nature of the parameter ‘. As regards
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characterizing the distance from the contact point where the deviation jTðsÞjCSL
� Tmj is significant, there are many different

possibilities and, to fix attention, we will consider the following two quantities
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Q1ð‘Þ , 2
Z

CSL

jT � Tmj
max jT � Tmj

ds; ð47aÞ

Q2ð‘Þ ,
R

CSL
sðT � TmÞ2 dsR

CSL
ðT � TmÞ2 ds

: ð47bÞ
We note that when ‘!1, the distance measures Q 1 and Q2 do not vanish, but instead approach some finite limiting valueseQ i , lim‘!1Qið‘Þ; i ¼ 1;2. Therefore, in Fig. 11 we plot the normalized quantities Qið‘ÞeQ i
� 1


 �
; i ¼ 1;2, as a function of the

parameter ‘. The results reported in Fig. 11 were obtained with the resolution h ¼ 5� 10�6. We note that the data reveals
a linear scaling for both plotted quantities which, given the log–log scale used in the plot, implies the following approximate
behavior for the quantities Q1 and Q 2
Q ið‘ÞeQ i

� 1

 !
	 a‘�1 ) Q ið‘Þ 	 eQ i þ b‘�1; i ¼ 1;2; ð48Þ
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Fig. 11. Scaling of (triangles) Q1ð‘ÞeQ 1
� 1


 �
and (circles) Q2 ð‘ÞeQ 2

� 1

 �

as a function of the parameter ‘. The solid line has the slope ‘�1.
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Fig. 12. Temperature isolines eT ðx; yÞ � Tm and (dashed line) the interface CSL in the solution of the problem in case C.
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where a and b are some positive constants. Empirical relation (48) implies that our measures Q1 and Q2 of the distance from
the contact point where relation (9a) significantly deviates from (7) depends on the parameter ‘ and this dependence has a
well-defined universal behavior. More specifically, this distance has a minimum value given by eQ i; i ¼ 1;2, and grows pro-
portionally to ‘�1. Thus, the parameter ‘ in (11) can be interpreted as the inverse of the length-scale over which the contact
points affect the temperature distribution along the interface in our closure model. Remarkably, as is evident from Fig. 11,
the scaling expressed by Eq. (48) holds over about three orders of magnitude in ‘. As regards the bound from below on this
interval, it corresponds to Qið‘Þ on the order of the length of the entire interface, i.e., (9a) deviates from (7) everywhere on CSL

(cf. Fig. 5a). On the other hand, the upper bound on this scaling range is related to the numerical resolution which determines
the accuracy with which the integrals in (47b) are evaluated.

We finally come to case C corresponding to the heat source moving at a constant velocity Uex which provides a simplified
model of weld pool formation in a welding process. In general, such process is unsteady and is described by the time-depen-
dent versions of equations (1b). However, assuming that the time-scale associated with the free boundary formation is much
shorter than the time-scale of the heat source translation, this phenomenon may be regarded as quasi-stationary in a moving
frame of reference given by the transformation ~xðt;xÞ , x� tUex. Therefore, defining eT ðt; ~xðt;xÞÞ , Tðt;xÞ we obtain
@T
@t

����
x
¼ @

eT
@t

�����
~x

� U
@eT
@~x

�����
t

; ð49Þ
so that the assumed stationarity in the moving frame of reference @eT
@t

���
~x
� 0 yields the following ‘‘corrected” forms of equa-

tions (1)
� ~$ � ðkS
~$eT Þ ¼ U

@eT
@~x

in XS; ð50aÞ

� ~$ � ðkL
~$eT Þ ¼ U

@eT
@~x

in XL; ð50bÞ
where ~$ represents differentiation with respect to the transformed variable ~x. Eq. (50b) are supplemented with boundary
conditions (2)–(4) as used in the original system together with the time-dependent version of condition (5), namely
� k
@eT
@n

" #L

S

¼ LUðex � nÞ on CSL:
Following the procedure described in Section 3, we obtain the corresponding adjoint system
� ~$ � ðkS
~$eT �Þ ¼ �U

@eT �
@~x

in XS; ð51aÞ

� ~$ � ðkL
~$eT �Þ ¼ �U

@eT �
@~x

in XL: ð51bÞ
The boundary conditions and expressions characterizing the gradient remain the same as in (31)–(34) and (38), respectively.
Fig. 12 illustrates the temperature distribution and the position of the interface obtained in this case, where we used U ¼ 100
and did not impose the contact angles. We note a deformation of the shape of the interface CSL induced by the advection. An
analogous approach was applied in [33] to optimize complex 3D thermo-fluid phenomena occurring in welding processes
and involving the conservation of mass, momentum and energy in the presence of free boundaries and capillary effects.

6. Conclusions

This paper is concerned with the formulation of the Stefan problem involving contact points (lines) as a PDE optimization
problem where the shape of the interface serves as the control variable. By allowing for a systematic deviation of the inter-
face temperature TjCSL

from the constant melting temperature Tm it is possible to accommodate a prescribed macroscopic
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contact angle am which is known to be a constitutive property of the material [19]. Since the RHS of expression (9a) is gen-
erally given in terms of unknown microscopic quantities, the proposed method can be regarded as a closure model for the
governing system of equations. In this sense it is related to ‘‘subgrid-scale” models used commonly in computations of high
Reynolds number turbulent flows [34]. The key difference is that while in subgrid-scale models for turbulence simulations
the unresolved (modeled) quantities are defined at length-scales smaller than the grid size everywhere in the solution do-
main, in the present problem the closure model mostly impacts the neighborhood of the contact point, and the characteristic
dimension of this neighborhood is controlled by the parameter ‘. Our proposed approach to dealing with the contact point
singularities in the Stefan problem has similarities to the treatment of contact points in the momentum (Navier–Stokes)
equation which results in the Navier boundary conditions [35,36]. In analogy to the relaxation of Dirichlet boundary condi-
tion (7) for the temperature, in the Navier boundary condition the no-slip constraint on the velocity is replaced with a for-
mulation allowing for a finite slip velocity in a neighborhood of the contact point. As is the case in our problem too, the
dimension of this neighborhood (i.e., the ‘‘slip length”) is a macroscopic parameter.

The Stefan problem formulated in this way turns out to be a shape optimization problem, and the shape differential cal-
culus is a key enabler of a computational algorithm employed to solve such a problem. We use a suitably-defined adjoint
system to determine the shape gradient of the cost functional, and the main novelty here is a definition of the gradient con-
sistent with the presence of the contact points. Optimization was performed using smoothed (Sobolev) shape gradients,
which was shown in [29] to have the effect of regularization. Our computational examples confirm the efficiency of the pro-
posed approach on a few test cases. The results obtained reveal a systematic deviation of the interface temperature from Tm

in the neighborhood of a contact point as a function of the imposed contact angle am. The length-scale over which this devi-
ation occurs exhibits a universal behavior with respect to the parameter ‘. The results reported in Section 5 show that for
vanishing values of ‘ this length-scale becomes comparable with the characteristic dimension of the interface, while the
magnitude of the deviation vanishes. On the other hand, for increasing values of ‘, this length-scale decreases and
approaches a (small) fixed distance while the magnitude of the deviation increases.

As regards the computational performance, we remark that despite the formal linearity of Eq. (1), the Stefan problem is in
fact geometrically nonlinear, hence its computational solution must necessarily involve some form of iterations, regardless of
the method used. It should be stressed that since the interface CSL is the control variable, it is always represented explicitly
and as such does not have to be reconstructed a posteriori to satisfy the interface conditions. Another novelty of the proposed
approach is that in this way we relax temperature condition (7), rather than flux condition (5) as was proposed in some ear-
lier studies, which is shown to be thermodynamically more consistent. We also emphasize that the presented method ad-
mits a straightforward generalization to three dimensions. Our future work on this class of problems will involve extensions
of the present method to a time-dependent problem and problems involving transport of the momentum modeled by the
Navier–Stokes equation [33]. We also intend to apply this method to the study of actual inverse problems where some input
parameters need to be optimized to meet certain objectives. On the technical side, an interesting question is to determine
Sobolev gradients for general perturbations Z (i.e., not restricted to the form Z ¼ ferÞ.
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Appendix A. Regularity of solutions of the classical Stefan problem in domains with corners

In this appendix we present the proof of existence of a smooth solution belonging to the Hölder class C1;a of the free-
boundary problem defined in (1)–(5) and (7), provided a certain regularity of the boundary CSG [ CLG and corresponding
boundary data can be guaranteed. We emphasize that this proof refers to the situation where no contact angles are imposed.
The idea of the proof is to reduce our problem to a form which can be treated using results from the existing literature on
elliptic boundary value problems in domains with corners (e.g., [37]). We will first consider the case of kS ¼ kL ,

�k, and then
extend this result to the case of kS – kL. We begin by stating the following assumptions:

– the boundary CSG [ CLG is C2,
– the Dirichlet and Neumann data (cf. (2b) and (3))
Ts on CS;

uSG on CSG;

uLG on CLG

8><>: ðA:1Þ
is in the space W3=2;pðCSÞ �W1=2;pðCSG [ CLGÞ; p P 2,
– compatibility condition (4) is satisfied,
– 8x 2 CS; Ts < Tm and 9x 2 CLG; Tjx > Tm.
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We note that the last assumption guarantees the existence of contact points on the top surface. In regard to the case
kS ¼ kL, the trace theorems in [21] (Section 1.5) allow us to conclude that there exists an unique T 2W2;pðR2Þ, such that
its trace fcjCS

ðTÞ; cjCSG[CLG
ð@T=@nÞg is in W3=2;pðCSÞ �W1=2;pðCSG [ CLGÞ. Moreover, for p > 2 one has the following Sobolev

imbedding theorem [18]
W2;pðXSLÞ# C1;aðXSLÞ; 0 < a , 1� 2=p < 1: ðA:2Þ
The Stefan problem defined in (1)–(5) and (7) and with kS ¼ kL may thus be reduced to a boundary value problem with the
homogeneous boundary conditions for the unknown ðT � TÞ 2 H1ðXSLÞ satisfying
Z

XSL

�k$ðT � TÞ � $v dX ¼
Z

XSL

$ � ð�k$TÞv dX 8v 2 H1ðXSLÞ: ðA:3Þ
The following result is a special case of the theorem proved in [37] and is important for the study of the regularity of the
solution of (A.3)

Theorem A.1. We assume that p P sþ 2; s 2 f�1;0;1; . . .g. Let T � T be a solution of problem (A.3) with $ � ð�k$TÞ 2Ws;pðXSLÞ.
Then T � T 2W2þs;pðXSLÞ if and only if 8k R f2lþ 1jl 2 Z; l – 0g; 0 6 ReðkÞ 6 sþ 2� 2=p.

We note that f2lþ 1jl 2 Z; l – 0g is the set of the eigenvalues of some Laplace–Beltrami operator corresponding to our
particular boundary value problem. This set is determined by the type of the boundary conditions imposed on the boundary
segments of @XSL and by the measures of the angles between these segments [37]. When p > 2, then 1 < 2� 2=p 6 2, and the
assumptions of Theorem A.1 are satisfied for s ¼ 0 implying that the solution T and its gradient are continuous up to the
boundary. If now the solution T assumes the value Tm somewhere inside XSL, there must exist an entire isoline satisfying
the classical Stefan condition (7).

Let us now turn to the less trivial case when kS > kL. We introduce a new variable bT 2 H1ðXSLÞ which satisfies a system
equivalent to (1)–(5) and (7), namely
� DbT ¼ 0 in XS [XL; ðA:4aÞ

� @
bT
@n
¼ 2uSG

kS þ kL
on CSG; ðA:4bÞ

� @
bT
@n
¼ 2uLG

kS þ kL
on CLG; ðA:4cÞ

bT ¼ ð1þ qÞTs on CS; ðA:4dÞ

@bT
@n

" #L

S

¼ 0 on CSL; ðA:4eÞ
where q , ðkS � kLÞ=ðkS þ kLÞ. According to the result proved above, there exists a solution of (A.4e) in the space C1;aðXSLÞ.
Moreover, one can identify an isoline corresponding to each value assumed by this solution inside the domain XSL. Supposing
that this value is now ð1þ qÞTm, one can verify that
T ¼
bT�2qTm

1�q in XL;bT
1þq in XS;

8><>: ðA:5Þ
and CSL defined as the isoline corresponding to bT provides an unique C1;aðXLÞ � C1;aðXSÞ solution of original system (1)–(5)
also satisfying classical Stefan condition (7). This guarantees the existence of contact points on the top surface.
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